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The effect of an imposed shear flow on the stability of directionally solidifying binary
alloys is investigated. It is shown that without the imposed shear flow the system
is dominated by stationary boundary-layer-mode convection, a convection of salt-
finger type confined to the solute boundary layer above the melt/mush interface.
When the shear flow (no matter how small) is imposed, the boundary-layer mode
becomes a longitudinal mode (roll-axis parallel to the imposed flow) propagating in
the direction perpendicular to the shear flow, while the modes containing a transverse
component are inhibited. As the shear flow becomes large enough, a transverse
mode (roll-axis perpendicular to the imposed flow) of very unstable characteristics is
induced. This mode, called the morphological mode, can exist even without buoyancy.
It is triggered by the flow induced in the mushy layer through the Bernoulli force,
a pressure variation resulting from the imposed flow passing along the corrugated
melt/mush interface. It, nonetheless, has no relation to the boundary layer instability
of the shear flow. The effect of imposed shear flow is so significant that the stability
characteristics can be entirely different when the intensity of the imposed flow is
larger than a critical value, which is calculated in the present paper.

1. Introduction

The mechanism driving the formation of freckles in directionally solidified binary
alloys has attracted a great deal of research effort in the past several decades because
of its catastrophic effects on the mechanical properties of cast alloys. Copley et al.
(1970) illustrated experimentally that freckles are a direct result of plume convection,
a buoyant flow passing through vertical channels in the dendritic mushy zone into
the melt above. To date, several experimental and theoretical investigations (Tait &
Jaupart 1992; Chen, Lu & Yang 1994; Amberg & Homsy 1993; Anderson & Worster
1995; Chung & Chen 2000a) have shown that the plume convection is closely related
to the convection in the mushy layer. To suppress the plume convection, Sample
& Hellawell (1984) suggested in their experiment that rotating the casting mode
with respect to an inclined axis would result in a casting without freckles. Chung
& Chen (2000b) found from a theoretical approach that, because of the inclined
rotation, a strong shear flow occurs above the melt/mush interface, which might play
a critical role in suppressing the freckles. This argument is partly supported by the
stability analysis of Lu & Chen (1997), who showed that a vertical rotation could
not effectively inhibit the convection in the mush because no shear flow is induced.
Nevertheless, as we will show in the present paper, under some circumstances this
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argument cannot be justified because an imposed parallel shear flow may induce a
very unstable mode, which may in turn trigger the formation of plumes. We therefore
conduct the present study to investigate this argument, to see how an imposed shear
flow can influence the stability of convection in the directionally solidifying binary
solution.

The effect of shear flow on directionally solidifying alloys has been investigated
by many researchers, who focused mainly on the coupled convective and morpho-
logical instabilities. Delves (1968, 1971) first considered the effect of shear flow on
the morphological instability, imposing quadratic and Blasius boundary-layer flows
above the melt/solid interface. Coriell et al. (1984) extended the work of Delves by
considering double-diffusive convection under the influence of plane Couette flow
parallel to the melt/solid interface. All of them concluded that the shear flow inhibits
the onset of the transverse mode, a two-dimensional roll with axis perpendicular to
the flow direction, and the onset of the instability is always of the longitudinal mode,
a two-dimensional roll with axis parallel to the flow direction. Their findings are
similar to those found in both Rayleigh-Bénard convection (Gershuni & Zhukhovit-
skii 1976) and salt-finger convection (Linden 1974; Chen & Chen 1997). Later,
MacFadden, Coriell & Alexander (1988) imposed a plane stagnation flow vertically
onto the melt/solid interface while focusing only on the stability of the transverse
mode. More recently, Forth & Wheeler (1989, 1992) have considered the effect of
the asymptotic suction boundary-layer flow and showed from both numerical and
analytical approaches that the suction-layer stability is generally unaffected by the
freezing melt/solid interface. They showed also that a longitudinal travelling wave is
always induced first by the shear flow. Davis and coworkers (see the review by Davis
1990) attacked this problem by emphasizing the instability of convection modes of
long wavelength for some special cases. All these studies considered a system of bulk
melt overlying a solid substrate.

A major difference of the present study from these previous investigations stems
from the fact that in the present physical system there is a dendritic mushy layer (the
mush) lying between the fluid layer (the melt) above and the solid substrate below. In
such a system, by and large, two kinds of convection modes may occur (Worster 1992).
One is the so-called boundary-layer mode, a salt-finger-type convection cell confined
to the shallow solute layer above the melt/mush interface. The other is the so-called
mushy-layer mode, a convection cell circulating largely in the mush. As we shall show
in the present paper, an imposed shear flow, which has the velocity profile of a suction
boundary-layer flow and moves in the direction parallel to the melt/mush interface,
has a profound influence on the stability of the boundary-layer mode but has virtually
no influence on the mushy-layer mode. More precisely, when the shear flow is imposed,
the roll-axis of the salt-finger cell (boundary-layer mode) aligns immediately with the
shear flow (becoming a longitudinal mode), similar to the result found previously by
Coriell et al. (1984) that under the influence of the shear flow the longitudinal mode
convection is the most unstable one. In some circumstances, however, the shear flow
may induce a transverse mode, which will eventually dominate the system. This novel
instability mode turns out to be a result of the interaction between the imposed shear
flow and the deformation of the melt/mush interface, and has no direct connection
with the buoyancy. We shall therefore call it the morphological mode in the present
paper.

Since in the present system the melt/mush interface moves vertically upwards with
a constant velocity, if we fix the coordinates on the interface, the fluid is seen to pass
partially vertically downwards into the melt/mush interface, not unlike a boundary-
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layer flow under asymptotic suction into a porous medium below. Because buoyancy
plays no role in the onset of the morphological mode, the possible analogy between
the present system and the asymptotic-suction boundary layer flow (Hocking 1975)
is examined, so that the relation between the morphological instability mode and the
instability of the asymptotic-suction boundary layer can be clarified.

Several months after we finished the first phase of the stability analysis (Chung
1998), similar work by Feltham & Worster (1999) came to our attention. They
investigated the morphological instability of a mushy layer unidirectionally solidifying
from above, in which a parallel flow (inviscid or viscous) is imposed in the melt below
the mush/melt interface. They indicated that the flow induced in the mush due
to the Bernoulli effect along the incipient corrugation of the interface causes the
morphological instability, and the imposed parallel flow plays a dominant role in
translating the interface shape horizontally in the asymptotic regime considered.
Owing to the similarity between the present system and that of Feltham & Worster
(1999), we investigate whether the present morphological mode is the same as the
mode found by Feltham & Worster (1999), and use our results to help understand
the mechanism driving the occurrence of the novel mode.

In the following, we describe in § 2 the physical configuration and the mathematical
formulation of the problem considered. The basic-state solution is given in § 3 and the
formulation for the linear stability analysis is derived in §4. The effects of imposed
shear flow on the stability are studied by the linear approach in § 5. We also discuss in
§ 6 the relevance of the present system to the case of the boundary-layer flow under
asymptotic suction. A discussion on the mechanism triggering the morphological
mode is given in § 7. Finally conclusions are drawn in §8.

2. Mathematical formulation

Consider the system shown in figure 1, a binary solution of concentration C, and
temperature T solidifying from below. A dendritic mushy layer lies between the semi-
infinite fluid layer above and the solid layer of eutectic temperature T and eutectic
concentration Cg below. We assume that the mush/solid interface grows upwards with
a constant velocity V' and employ a Galilean transformation with respect to V, fixing
the Cartesian coordinate on the mush/solid interface. Accordingly, z = 0 accounts
for the position of the mush/solid interface and z = h(x, y,t) for the position of the
melt/mush interface, which is unknown beforehand. It is assumed that the physical
domain is horizontally infinite so that in the far field a driving flow u(z — o0) = U, .,
parallel to the melt/mush interface can be imposed, where ¢, is the unit vector in
x-direction.

We consider the melt as a Newtonian fluid, the mushy layer as an isotropic porous
medium, and apply the Boussinesq approximation. To simplify the equations we
assume that the specific heat and the thermal conductivity of the solid are the same
as their liquid-phase counterparts (Worster 1986) and assume that thermodynamic
equilibrium condition holds in the mushy layer. Specifically, the temperature and
concentration in the mush satisfy the liquidus relation

T — Tp(Co) =T'(C — Cp), (1)

where the liquidus is assumed to be linear and T.(Cp) is the liquidus temperature
corresponding to the concentration Cy. This condition has been confirmed valid for
ammonium chloride solution by Chen et al. (1994), and is believed to be also valid
for other binary solutions of similar physical characteristics.



88 C. A. Chung and F. Chen

U,

)|

Fluid layer -

Mushy layer

FIGURE 1. A schematic of the physical system considered. A shear flow is imposed on a binary
solution which is directionally solidifying from below. The coordinates are fixed on the mush/solid
interface, which moves upwards with a constant velocity V.

We non-dimensionalize the governing equations with the following scales: V' for
velocity, H = «/V for length, x/V? for time, and fACpogxk/V for pressure, where
x is the thermal diffusivity, f = f* — I'a*, o* and B* are respectively the thermal
and concentration expansion coefficients, AC = Cy — Cg, po is the reference density
corresponding to concentration Cy and temperature T (Cy), and g is the gravitational

acceleration. The dimensionless temperature and concentration are, respectively,
_ T —-TuC) @zc—co
AT ’ AC °
where AT = T'AC = T (Cy) — Tkg.
To describe the fluid motion of the system, two sets of governing equations are

required: one for the fluid layer and one for the mushy layer. The governing equations
of the fluid layer are

0

(2a,b)

V-u=0, (3a)
110 0 ) A
—|l=—=—+u-Viu=Vu—#R,Vp+ (R0 —R.O)e., (3b)
g |0t Oz
0 0 )
<a—g+u V)H—V@, (36)
0 0 )
<&—a—z+u V)@—SV@, (3d)
and those of the mushy layer are
Veu=0, (4a)
u
—— = —R,Vp — R,0e., 4b
T p (4b)
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where R; and R, are respectively the thermal and solute Rayleigh numbers of the
fluid layer and R, is the Rayleigh number of the mushy layer. They are defined as
* 3 * 3 7
R = g ATH R = gp*ACH R, = gﬂACHoH’ (5a-0)
KV KV KV
in which v is the kinematic viscosity of the fluid and I, is the reference permeability
of the mush, assumed to be I1y = II(1). It is noted that R,, R. and R, satisfy the
relations R, = &/ #'R,,, R, = (1 + &/)H R, where S is the inverse Darcy number
defined as # = H?/Il, and «/ = I'«* /P is the buoyancy ratio. In addition, ¢ = D;/x
is the inverse Lewis number, D; the mass diffusivity of the fluid, ¢ = v/« the Prandtl
number, & = £/(cAT) the Stefan number, ¢ the specific heat per unit volume,
% = (C; — Cy)/AC the concentration ratio, % the latent heat per unit volume, and
C; the concentration of the solid. It is noted that the value of ¢ for the mush is very
small. We thus neglect the mass diffusion in the mush. Because of the thermodynamic
equilibrium condition, the dimensionless liquidus relation in the mush can be written
as 0 = O, which has been introduced into (4b) and (4d).
For the boundary conditions at the far field z — oo we have

0—060, O —0, u—Ui,e,. (6a—)
At the melt/mush interface z = h(x, y,t) we have
o0 0
b-0. C-C wm=o [m=0 (Ta-d)
on on
00 oy H
R — — 1 f—t _— f—t A _— + — — —
G -0 amt -0 32—y e <o, (e

in which [] denotes the jump of the enclosed quantity across the interface, (7a) is the
continuity of concentration, (7b) is the marginal equilibrium condition proposed by
Worster (1986), (7¢) is the continuity of mass flux, (7d) is the continuity of temperature,
(7e) is the continuity of heat flux resulting from (7f) and the Stefan condition, (7f)
illustrates that the liquid fraction of the mush at the interface is equal to unity, (7g)
accounts for the continuity of the normal stress, and (7h) is an empirical condition
proposed by Beavers & Joseph (1967), where u, is the planar velocity and A4 is an
empirical constant determined by experiment. Finally, at the mush/solid interface
z =0 we have

0=—1, u-n=0. (8a,b)

It is noted that the present formulations, except (6¢), are similar to those shown in
Worster (1992) and Chen et al. (1994), in which a detailed discussion of the equations
as well as the physical parameters are provided.

3. Basic-state solutions

Since the physical domain considered is assumed to be horizontally infinite, we
seek a basic-state solution in which the dependent variables depend only on z. By
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applying the scale analysis of Chung & Chen (2000b), we obtain the solutions in the
fluid layer h, < z < oo:

B B A/ AT (1) o
ub—Uoo{l (1/0+A\/m>e>ip[ ( hb)/a]}, (9a)

Vp = 0, Wy = 0, (9b, C)
0y = 0o + (0, — Oo) exp [—(z — hp)], (9d)

O, = 0;exp {— (Z_Ehbﬂ , (9e)

in which 0; = (—e¢/(1—¢))0y is the temperature (or the concentration) at the melt/mush
interface. In the mushy layer 0 < z < h;, we obtain

u,=0, v, =0, w,=0, (10a—c)
o—%, [(a+1\ F—p. [(B+1
= | 1 . 1
: a—ﬁn<a—m>+a—ﬁn(ﬁ—m) (104)
€ — 0;
= 70, (10e)

where o = A+B,f=A—B, A= (¢+ 00+ 7)/2, and B = /A2 — €0, — 7 0. The
temperature in the mush as shown in (10d) is to be solved implicitly and the basic
state porosity y, is a function of temperature. The height of the mushy layer h; can
be obtained by substituting 6, = 6; into (10d). Note that (10a—e) are the same as
those shown by Worster (1992) and Chen et al. (1994).

To elucidate the physical sense of the basic-state solution, we consider the case of
26 wt% ammonium chloride solution, whose physical properties are listed in table 1.
With these parameters the height of the mush is h, = 0.991, the fluid in the mush is
essentially quiescent, and the flow in the fluid layer is a boundary-layer-type shear flow
(figure 2). The characteristic length scale of the velocity variation of this shear flow is
proportional to the Prandtl number ¢. The flow velocity increases exponentially from
virtually zero near the melt/mush interface to U, in the far field. The velocity near
the interface can be obtained from (10a) as

_ 1/o N
= U (1/0+A\/W) ~0 (h

which can therefore be taken as a non-slip condition on the interface, as considered
by Feltham & Worster (1999).

The results of (9) and (10) for the temperature and solute distributions are exactly
the same as those of previous studies (Worster 1992; Chen et al. 1994), implying that
neither the temperature nor concentration fields are affected by the presence of the
shear flow. The temperature and the concentration in the mushy layer are the same,
increasing exponentially with height. In the fluid layer, both the temperature and the
concentration also increase exponentially with height. The characteristic length scale
of the temperature variation is O(1) while that of the concentration variation is O(g).
Since ¢ < 1, the variation of concentration is confined to a shallow solutal boundary
layer above the melt/mush interface. Beyond this layer, the solute concentration
remains virtually constant. For the same reason, the interface temperature is very
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FIGURE 2. The velocity profile of the imposed shear flow in a 26 wt% ammonium chloride solution.
The melt/mush interface is at about z = 0.991. The thickness of the shear boundary layer is
about 50 times of the mushy-layer height, and is of a similar length scale as the wavelength of
the suction-layer mode shown in §6. The imposition of U, at z — oo will theoretically lead to
the formation of a linear Couette flow while the present exponential velocity profile is a result of
the combination of the Couette flow and the velocity V' of the freezing boundary, on which the
coordinates are fixed.

close to the liquidus temperature T (Cy), namely 0; = 0. The porosity in general is
close to unity because ¥ > 1. The density distribution in both the mush and the
solute boundary layer is potentially unstable to small disturbances while in most of
the fluid layer it is statically stable.

4. Linear stability analysis

A linear stability analysis is employed to investigate the stability characteristics
of the system described in §2. We add small perturbations to the basic state of
§3 and substitute the combination into the governing equations, (3) and (4), and the
associated boundary conditions (6)—(8). By neglecting the products of small quantities,
we obtain the following linearized equations:

in the fluid layer

o 0 0 N\
(at R > I (12a)
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r 475°C/% o 10

4 338Jcm™? I3 0.013

Dy 1.7 x 1073 cm‘ s~! o 0.65

v 1.2 x 102 cm?s™! F 3.2

o 3.832 x 10~*°C! € 12.3

B 2.82 x 1073/% # 3.5 % 106
Tk —154°C 0, 0.5

Cg 19.7% A 0.1

C, 100%

TaBLE 1. The physical parameters and the corresponding values
for 26 wt% ammonium chloride solution.

0 0 0 ) ,
(at—az‘}—Ubax—EV > e ——@bW, (12b)
1 /0 0 0 2\ o2 L ,ow ,
(m_az+ ,,6x—0’V>Vw— Wos = VH(RO-RO); (120
and in the mushy layer
6 a 2 T a a _ /
0 0 , 0 0 g0

(5 ) —af o+ |o-o (5 - %) ~ai=—ow
V*w = —R,V30. (13¢)

The boundary conditions at z = 0 are
0=0, w=0, (14a,b)

at z = h, are

B 00 B 0] ([ 70, .
v—o, 02 ( ) =0 [T (Z5)n asea
0*w H
z+:/1\/m
B 0
Al G-S

and at z — oo are

) [T (15¢.)

él
0z

h &2 10 u o
P b+ax> T ‘Wﬂ] 7z ‘o-ax}m

+2up 5 (Vz h), — (15h)

oh\  , oh
—u;7+ax> rup, 2 (15¢)

H ow
(1) oz

0—-0, & -0 w—>0 — —0. (16a—d)
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In these equations all the horizontal components of velocities and pressure have been
eliminated and 60, @, w, and y are now the disturbed quantities and h = h(x, y, t) is the
disturbance of the melt/mush interface. When deriving the perturbation equations we
have assumed IT = I1(1), as did by Worster (1992) and Chen et al. (1994).

By applying normal mode expansion

0(x,y,z,t) 0(z)

O(x,y,z,1) O(z)

w(x,y,z,t) | = | W(z) |explwt+ilkix+kyy)]+cc, (17)
2(x,y,2,1) 2(z)

h(x,y,1) h

to (12)—(16), the partial differential equations are converted into ordinary differential
equations. In (17) w = w, + iw; is complex, where w, is the growth rate of the
disturbance and w; is the oscillation frequency, k. and k, are the wavenumbers of
the disturbances along respectively the x- and y-directions. If w, > 0 the basic state
is unstable; if w, < 0 the basic state is stable; and when w, = 0 the basic state is
neutral.

We employ Squire’s transformation and define the horizontal wavenumber as

k = ,/k%+k} and the ‘effective shear flow velocity’ @, as

o N B VNI o
uh:kxub/k_Uoo{l <1/O’+A\/m> exp[ (Z hb)/g]}’ (18)

in which U/, is called the effective shear flow velocity coefficient, defined as
U, = kyUs/k = U cos (¢r), (19)

where ¢, is the angle between the shear flow and the propagation direction of the
disturbance. In other words, the effective shear flow is the component of the shear
flow in the direction of the propagation of the disturbance. The physical meaning of
the parameter U/, will be discussed in more detail in §5. The use of (18) and (19)
results in a simplification of the equations as well as a reduction of the number of
parameters by one.

The simplified equations in the fluid layer after Squire’s transformation can be
written as

(D? + D — ikiiy — w — k*)0 = 0}, (20a)
(eD? + D — ikit, — w — k*)O = O, W, (20b)
W+%ayw@—v—%@(thﬂw+%%wzﬁm£—&@x (20¢)

and in the mushy layer as
(D> +D —w—k))+F(D—w)j =0, (21a)
[1:(D — @) + 7310 + [(6, — €)(D — ) + 6,17 = 6; %, (21b)
(D? — k)W = k*R,,0. (21¢)

The boundary conditions at z = 0 are

A

0=0, Ww=0, (224, b)
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at z = h, are

A A A A 1 —_— A A
0=0, DO -0 = ( . 8) 0,h, [0] =0, (23a—c)
A ,979/ A 9/ A A
D == b 5 == b i == 1 11 —_—
o0 = (20 )i 2= (52 )b Bl=dad @)
2 A H A A g1 7 -1 1
D*w, =4 m(DwJr — DW_ — ik, h) + ik, h, (232)
D—w ik, kit , o
2 _ap2 MMy b+ A 37 ' pe —
{(D + 3K — = )D—|— - }W+—|—2lk ub+h+H(1)Dw_ 0, (23h)
and at z — oo are
050, &0, w—>0, Dv—0, (24a—d)

in which D =d/dz.
Equations (20) to (24) constitute a complex eigenvalue problem

F =FRuk,w;U.,,0,6,F,6,H,.,0). (25)

The number of eigenvalues w of (25) is infinite, as is the number of neutral curves
corresponding to w, = 0. Physically, we need only to seek the branch of lowest R,,
below which (w, < 0) the system is stable to small disturbances and above which
(w, > 0) the system is unstable. Previous studies (Worster 1992; Chen et al. 1994) have
shown that, without the imposed shear flow, there are two branches of the neutral
curve of lowest R, corresponding respectively to the mushy-layer mode and the
boundary-layer mode. With the imposed shear flow, as we shall show later, there are
two other branches of neutral curves corresponding to the morphological mode and
the suction-layer mode. All these neutral curves are to be examined by the shooting
technique along with the orthonormalization process. The numerical procedure is the
same as that shown in Chen et al. (1994), to which the reader may refer for details.
It is noted that the differential equations become stiffer as U increases, leading
to a slower convergent rate of iteration. To improve the convergence efficiency one
can rescale the equations by using Ul as the characteristic velocity to replace V
(as will be shown in §6). By and large, it requires about 2000 CPU seconds in the
CRAY-YMP/EL of our institute to compute a point of complex eigenvalue.

5. Effects of imposed shear flow on the stability

Consider the 26 wt% ammonium chloride solution whose physical properties are
listed in table 1. We investigate the effect of shear flow on the stability of the present
system and therefore will focus on the influence of the parameter U/, The effects of
other physical parameters have been discussed extensively by Chen et al. (1994).

Before proceeding to the analysis, note that in the present system there are three
instability modes of different roll-axis orientations: the longitudinal mode whose
roll-axis is parallel to the imposed shear flow (corresponding to the case U, = 0);
the transverse mode whose roll-axis is perpendicular to the imposed shear flow
(corresponding to the case U!, = U,); and the oblique mode whose roll-axis is
oblique to the imposed shear flow (corresponding to the case 0 < U/, < Uy).

We first consider the case U/, = 0 (but U, may not vanish, see definition (19)).
Since in this case @1, = 0, (20) to (24) can be reduced to those of Chen et al. (1994)
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FIGURE 3. (a), (¢), (e), (g), (i), (k) The evolution of the neutral curves of the mushy-layer mode
(thin curve) and the boundary-layer mode (thick curve) as the intensity of the imposed shear flow
(or the propagation direction of disturbance) changes; (b), (d), (f), (h), (j), (I) The corresponding
oscillation frequency of the instability modes (a,b) U., = 1000; (c,d) U, = 2000; (e, f) U., = 3000;
(g,h) U, = 4000; (i,j) U, = 5000; (k,I) U, = 6000. Note that the boundary-layer mode is
invariably more unstable and of higher oscillation frequency than the mushy-layer mode. Both
modes are oscillatory in nature. The stability of the boundary-layer mode increases with U’ while
the mushy-layer mode retains its stability as U/ changes. All these modes are either oblique
(U, < Uy,) or transverse (U, = U,,).

so that the results of Chen et al. apply. Namely there are three different kinds of
instability modes corresponding to the three neutral curves: the mushy-layer mode,
the boundary-layer mode, and the oscillatory mode. All these modes are longitudinal.

For U/, > 0, the evolution of the neutral curves as U/, increases from 1000 to
6000 is shown in figure 3, in which the thick curve accounts for the boundary-layer
mode and the thin curve accounts for the mushy-layer mode. Results indicate that on
applying U/, > 0, the oscillatory mode vanishes and the other two modes, which are
originally stationary, turn immediately into oscillatory ones, being similar to those
found by Linden (1974) and Coriell et al. (1984). The plots in the lower array of
figure 3 show the oscillation frequency corresponding to the counterpart of the upper
array. The frequency of the critical boundary-layer mode is O(10%) and that of the
critical mushy-layer mode is O(1072). Both are negative, implying that the instability
modes are the travelling waves propagating along with the shear flow. The results of
figure 3 also show that the boundary-layer mode becomes more stable as U/ increases
while the mushy-layer mode is virtually unaffected by the change of U.. It is also
seen that, as U, increases, the absolute values of the frequency of both modes also
increase, implying that the speed of the travelling wave increases with the shear flow.

As U/ increases to 7000 (figure 4a), a closed neutral curve appears near the bottom.
The enclosed region becomes larger as U/, increases (figure 4¢) until, at U/, = 8158
(figure 4e), the closed curve coalesces with the curve of the boundary-layer mode,
forming another neutral curve as shown in figures 4(g) and 4(i). An enlargement
of the evolution of the closed neutral curves is illustrated in figure 5. The closed
neutral curve first appears at about U, = 6760 and the enclosed region lies within
the domain of R, < 0. Note that the imposed flow for U, = 6760 is equivalent to
a flow of velocity about 1cms™ for either 26 wt% ammonium chloride solution or
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FIGURE 4. As figure 3 but for larger Ul : (a,b) U., = 7000; (c,d) U, = 8000; (e, f) U, = 8158;
(g,h) U, = 8200; (i,j) U, = 8500. The critical R, of the boundary-layer mode decreases with
increasing U.,. The neutral curve of the boundary-layer mode moves downwards as U, increases,
and coalesces with the closed neutral curve of the morphological mode. Similar coalition occurs for
the frequency curves of these two modes. The frequencies (and the wave speed) of the boundary
layer mode and the morphological mode are of the same order of magnitude.
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FIGURE 5. An enlargement of the closed neutral curves corresponding to the morphological mode.
As Ul increases, the area of the closed neutral curve increases and it eventually coalesces with the
neutral curve of the boundary-layer mode. The three points A, B, and C correspond respectively to
the cases shown in figures 8(a), 8(b) and 8(c).

typical sea-ice solution, far below the typical far-field value of 10cms™! in sea-ice case
suggested by Feltham & Worster (1999). The area of the enclosed region increases
with U, gradually becoming a region covering both positive and negative R,. The
enclosed region covers instability modes of smaller R,, than those of the other two
modes, implying that they have taken over the role played previously by the boundary-
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FIGURE 6. Variations of the stability characteristic values with U/,. (a) The critical wavenumber k¢;
(b) the critical Rayleigh number R¢; (¢) the oscillation frequency of the critical mushy-layer mode

m?>

f; (d) the oscillation frequencies of the critical boundary-layer mode and the morphological mode
of. B, The boundary-layer mode; X, the morphological mode; ®, the mushy-layer mode.

layer mode to dominate the system. We call these modes the morphological mode
because, as we shall show in §7, they are the result of the interaction between the
imposed shear flow and the interface deformation. Note also that the frequency of the
morphological mode is of the same order of magnitude as that of the boundary-layer
mode, suggesting that these two modes are of similar travelling speed (see the lower
array of figure 4). Note also that negative R, means that the system can be unstable
even though the destabilizing solute gradient has become a stabilizing one.

We summarize in figure 6 the variations of the critical R,, (or R{,) and the critical
k (or k¢) of both the mushy-layer and boundary-layer modes with U, and the
corresponding oscillation frequencies. It is seen that the mushy-layer mode, in terms
of either R¢, or k¢, is virtually unaffected by the shear flow because the buoyancy force
in the mush is much larger than the Bernoulli force (Feltham & Worster 1999) induced
by the imposed flow. The R, of the boundary-layer mode, nevertheless, increases first
with U, but then starts to decrease at about U., = 5500. Also shown in figure 6(b) is
the R,, corresponding to the three solid circles of figure 5, or the maximum R,, of the
closed neutral curve corresponding to the morphological mode. It is found that the
maximum R,, eventually coincides with the R, of the boundary-layer mode as U/,
changes, indicating that the boundary-layer mode and the morphological mode will
eventually merge and become the same mode. The w; values of these three modes
are invariably negative except in a small range U, < 2000 where the w; of the
mushy-layer mode is slightly larger than zero. The absolute value of ; increases with
U/, before the onset of the morphological mode is triggered, i.e. the instability modes
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appear as travelling waves, propagating along with the shear flow with a larger speed
as U/, increases.

The physical meaning of the result shown in figure 6(b) is worth examining. It is
seen from (19) that U, < U,, implying that when a driving flow of U, is applied in
the far field, all the cases U., < U,, can occur. For example, in an experiment imposing
a flow of U,, = 4000, the possible RS, can cover a range corresponding to U/, < 4000.
As one can see from figure 6(b), the smallest RS, for these cases is the boundary-layer
mode corresponding to U., = 0, implying that the longitudinal boundary-layer mode
is the most unstable one. This result applies to all the cases before the onset of the
morphological mode, which first occurs approximately at U, ~ 7000. To say this more
specifically, before the onset of the transverse morphological mode, the longitudinal
boundary-layer mode (U!, = 0) is invariably the most critical one, while the modes
will transverse component (U, > 0) are always of larger RS, being unlikely to appear
in the system with small disturbances. Namely, as soon as the flow is imposed (no
matter how small the flow is), the roll-axis of the boundary-layer mode (a salt-finger
type cell) will turn to the direction of the flow, and it becomes a longitudinal mode.
This is similar to the experimental findings of Linden (1974) and Chen & Chen (1997)
and to the theoretical result of Coriell et al. (1984).

Although the non-longitudinal mode is unlikely to occur before the onset of
the morphological instability, it is nevertheless interesting to illustrate in figure 7,
the critical flow patterns of both the mushy-layer mode and the boundary-layer
mode corresponding to the cases U/, = 1000 to 8000. All modes are either oblique
(U, < Uy,) or transverse (U, = U,,) and the effective shear flow (the component of
shear flow that affects the stability) is in the direction pointing to the right of the
page. It is seen that the convection in the mush is hardly influenced by the shear flow
while the convection cells in the melt respond to the shear by tilting upstream and
propagating downstream.

We also examine the flow patterns of the morphological mode (figure 8) corre-
sponding to the three cases shown by the three solid circles of figure 5. All the modes
shown are either oblique or transverse, although the transverse mode is the most
critical one. For U/, = 6760 (figure 8a), the morphological mode occurs above the
melt/mush interface and the cells tilt in the direction of the shear flow. Its characteris-
tic length is larger than the thickness of the solute boundary layer while smaller than
the height of the mush. As U/, increases to U, = 7000 (figure 8b) and U, = 8000
(figure 8c), the cell becomes smaller and tilts gradually against the shear flow. Note
that at U, = 8158 the curves of the morphological mode and the boundary-layer
mode coalesce (see figure 4c), and the critical flow patterns of these two modes will
have the same characteristics, both tilting to the direction opposite to the shear flow.

6. Comparison with asymptotic suction flow over fixed porous media

The results of §5 show that the morphological mode exists even when buoyancy
is absent. Besides, since the melt/mush interface moves vertically upwards with a
constant velocity V, as the coordinate is fixed on the interface the melt is seen to pass
partially vertically downwards into the interface with a constant velocity V. Both
these facts raise the question of whether the morphological mode is related to the
instability of the boundary-layer flow under asymptotic suction, as investigated by
Hocking (1975). We attack this question in this section, by focusing on the possible
instability mode relevant to the asymptotic suction effect.

Based on the characteristic scales used in the present analysis, the critical wavenum-
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@ (b)

FIGURE 7. The critical flow patterns correspond to the cases of figures 3(a), 3(g) and 4(c). (a)
The mushy-layer mode for U, = 1000, its critical values are k¢ = 2.2, RS = 21.921. (b) The
boundary-layer mode for U, = 1000, for which k¢ = 39, RS, = 3.227. (¢) The mushy-layer mode
for U, = 4000, for which k¢ = 2.2, R, = 21.901. (d) The boundary-layer mode for U, = 4000,

m

for which k¢ = 38, RS, = 5.022. (e) The mushy-layer mode for U, = 8000, for which k¢ = 2.2,

m

RS = 21.937. (f) The boundary-layer mode for U, = 8000, for which k¢ = 27, R} = 3.080. In
general, the flow patterns in the mush are barely influenced by the imposed shear flow, which moves
towards the right of the figure. The convection cells in the melt, either of the mushy-layer mode
or of the boundary-layer mode, respond to the imposed shear with a tilt-distortion of their shape
in the opposite direction to that of the imposed flow. All the flow patterns shown here are either
oblique (U., < U,) or transverse (U, = U,). Note that the height of the mushy layer (the dotted
region) is 0.991, about the same order of magnitude as the thermal boundary layer thickness, which
is unity. The solute boundary layer above the melt/mush interface is of the order of the inverse
Lewis number ¢, i.e. 0(0.013).

ber of the instability mode can be as small as O(1072) and the critical shear flow
velocity can be as high as U, = 50000. It turns out that, under such a scaling, the
convergence of the numerical computation is rather slow and in most of cases the
iteration fails to converge. We therefore need to change the present scale system,
which was defined on the basis of the thermal and solute gradients in previous sec-
tions, into the one which can reflect the characteristics of the shear flow instability
under asymptotic suction. Accordingly, based on the shear flow velocity and the
kinematic viscosity, we choose U, for velocity, v/V for length, v/V U, for time, and
the other scales remain the same as before, and also assume U, # 0 to consider all
the modes with a transverse component. Note that the scales in the mushy layer do
not change, so that (21) remains the same. The disturbance equations in the fluid
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FiGURE 8. The convection cells of the morphological mode corresponding to the three solid points
shown in figure 5. (a) U, = 6760, k° = 13, R, = —0.0987; (b) U., = 7000, k* = 14.25, R, = 0.0666;
(¢) U, = 8000, k = 21.8, R, = 1.139. In (a) and (b) the morphological mode is isolated from the
boundary-layer mode, and is tilted into the direction of the imposed flow. In (¢), the morphological
mode merges with the boundary-layer mode, the convection cell tilts into the opposite direction to
that of the imposed flow, being the same as the boundary-layer mode. All the flow patterns shown
here are either oblique (U, < U,) or transverse (U, = U,,). Note that the height of the mushy
layer (dotted region) is 0.991, about the same order of magnitude of the thermal boundary layer
thickness, which is unity. The solute boundary layer above the melt/mush interface is of the order
of the inverse Lewis number ¢, i.e. 0(0.013).

layer are changed into the following forms:

A 0
D? + 6D —ick*, —oRew* —k™)0 = o*Re'gvAv*, (26a)
d *
z
¢D"2 + 6D —ick"ii, — 6Ré " — k'O = aRe’d@b W, 26b
d *
z
25 2p.%2
[D*2+(D*—Re’w*)—k*z—ik*ab](D*Z—k*z)W*+ik*3;:;’@* = %(RtH—RC@), (26¢)
in which
x oV |4 ,
Re = Re% = (va cos(¢r) = U, (27)

is the reduced Reynolds number, resulting from Squire’s transformation. We seek the
critical value of Re'. In (2.6) and (2.7), D = d/dz", z* = z/o is the new dimension-
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FIGURE 9. The neutral curves (a) and the propagating wave speed (b) of the suction-layer modes. The
suction-layer mode is of a length scale close to the thickness of the imposed shear boundary layer,
which is about 50 times larger than the height of the mushy layer. The suction-layer mode is much
more stable than either the morphological mode or the boundary-layer mode or the mushy-layer
mode, and is therefore not likely to occur in the present system. The suction-layer mode becomes
more stable when the solidification effect (as shown by R,) is more intense.

less length, k* = ok the new dimensionless wavenumber, w* = (¢/U. ) the new
dimensionless frequency, and w* = Ww/U/, the new dimensionless disturbance velocity.
The new boundary conditions at z* — oo are

050, 6&—>0 W —0 DWW —O0, (28a—d)
and at the interface z* = h, /o (or z = h;) are
A A A A 1— 3 A
0=0, DO -0)=0 ( ‘°) <d95> i, (294, b)
€ dz
A A ﬂ" * A
0] =0, D, —oDb_ = 2240/ 5. (29¢, d)
0, —%
. dOy/dz"\ », A A e R
X=<M)h, Re'Wy —W_ = ik™uy, h*, (29, 1)
H . di,\  « . d?u,\ -
R/D*ZA* — A R/D*A*_ DAi_ * * * *
DWW, =0 H(l)( eD*'W, —oDWw_ —ik (dz*)+h>+lk (dz*2>+h’
Re' [(D*2 + D" —Reo" —3k™ —iku,) D" +ik* <d ) } W
z
+

. %3 duy A a3 H R
+2ik <dz*)+h + H(I)DW =0, (29h)
in which h* = fz/ ¢ is the new dimensionless disturbance of the interface position. The
boundary conditions at the mush/solid interface remains as in (22). Equations (26)
and (21) together with the boundary conditions (22), (28) and (29) constitute again a
complex eigenvalue problem, which is solved with the same numerical scheme used
in previous sections.

Figure 9 shows the neutral curves for various R,,. The critical points corresponding
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R, Re k* ¢

0.0 51306 0.1575 0.1519
0.1 68886 0.1460 0.1435
0.3 91818 0.1360 0.1354
1.0 141853 0.1220 0.1235

TaBLE 2. The characteristic values of the critical points of the neutral curves shown in figure 9.

to the minimum of Re’ (equivalent to U/, see (27)) are connected with the dotted curve
and the corresponding values of Ré', k*, and ¢ = —w; /k" (the wave speed) are listed
in table 2. It is shown in figure 9(a) that the case of R,, = 0, which accounts for the
case of zero buoyancy, is most unstable. The critical Re’ increases with R,,, implying
that the solidification is a stabilizing factor for the shear flow with asymptotic suction.
Figure 9(b) illustrates that the solidification causes a reduction of the propagation
speed of the instability mode, which again is due to the stabilizing thermal field in
the system. For the shear layer flow under asymptotic suction of Hocking (1975), we
found the critical values are Re’ = 54370, k* = 0.1555, ¢ = 0.150; namely, his Re’
is much larger than the present case while k* amd ¢ are quite close. The less stable
situation of the present system is a result of the melt/mush interface being allowed to
deform while that of Hocking is a fixed porous boundary. A free-to-deform boundary
leads naturally to a less stable flow. Since this instability mode is of the length scale
of the shear boundary-layer thickness (see figure 2) and its characteristics are closely
related to the suction effect, we call this mode the suction-layer mode.

In summary, the morphological mode and the suction-layer mode have very dif-
ferent length scales and different stability criteria, while both of them result directly
from the imposition of the shear flow. The morphological mode occurs in a shallow
region above the melt/mush interface while the suction-layer mode occurs in a region
covering virtually the whole depth of the shear boundary layer. The critical Re’ (or
U/)) of the morphological mode is much smaller than that of the suction-layer mode,
suggesting that the morphological mode dominates over the suction-layer mode in
the system. Both modes are transverse, propagating in the direction of the imposed
shear.

7. Mechanism triggering the morphological mode

In this section, we discuss the mechanism related to the occurrence of the mor-
phological mode. We shall first examine whether the morphological mode is directly
related to the deformation of the melt/mush interface, as concluded by Feltham &
Worster (1999). To do this, we assume that the interface remains planar (or non-
deformable) under perturbation. Since the height of the mush is now a constant, one
of the interface conditions can be omitted and we choose the marginal equilibrium
condition (7b). We implement the linear stability analysis for the case of U/ = 8200.
The result is shown in figure 10, in which the solid curves correspond to the case
with a deformable interface and the dashed curve corresponds to the case with a
fixed-planar interface. It is seen that, when the interface is fixed to be planar, the
morphological mode disappears and the system becomes more stable. The role played
by the interface is thus confirmed; namely, without allowing interface deformation,
there is no morphological mode.
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FiGURE 10. The neutral curves for U/, = 8200, in which the two solid curves show respectively the
mushy-layer mode (left-hand curve) and the boundary-layer mode (right-hand curve). The dashed
curve shows the case assuming that the perturbation on the interface to be zero. It is seen that
the flow of fixed interface is more stable than the flow allowing interface deformation, and the
morphological mode does not exist when the interface is fixed.

To elucidate more clearly the stability mechanism, we also examine the detailed
flow structure and the associated temperature distribution. The case we consider is
U/, = 7000, point B of figure 5. Figure 11(a) illustrates the streamlines of the flow in
both the melt and the mush (solid curves) and the flow pattern of the morphological
mode (dotted curves). Note that the present morphological mode is the same mode
as shown in figure 8(b) when the same contour levels are chosen. The streamlines in
the melt are a combination of the imposed shear flow and the morphological mode
convection. The magnitude of the flow in the mush is only about one-thousandth that
in the melt, and therefore named weak flow by Feltham & Worster (1999).

By comparing figure 11(a) with figure 2(a) of Feltham & Worster (inviscid flow),
we found that the present weak flow is different from theirs by a phase shift. This
difference is due to the effect of viscosity in the melt, which introduces a phase lag
between the interface corrugation and the pressure variation. The weak flow is no
longer impinging on the crest of the corrugated interface, but about halfway between
the crest and the trough. This suggests that the weak flow may contribute not only
to the deformation of the interface, but also to its translation. This scenario can
be explained more clearly by the isotherms shown in figure 11(b). Because of the
direction of the weak flow, the heat advection compresses the isotherms in the mush
at the upstream face of the trough and rarefy at the downstream face. This implies
that the upstream face will solidify but the downstream face will melt because the
conduction of heat away from the upstream face is enhanced while that from the
downstream face is inhibited. Accordingly, the interface is likely to translate in the
direction of the imposed flow. On the other hand, similarly, the perturbed flow in
the melt compresses the isotherms at the upstream face of the trough and spreads
them at the downstream face. This implies that the upstream face will melt while
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FIGURE 11. The streamline patterns and isotherms corresponding to point B of figure 5, a local
maximum of the neutral curve. The imposed shear flow moves from left to right. (a) The streamlines
in the melt represent a combination of imposed shear flow and the morphological mode shown by
the dashed curves. The magnitude of flow perturbation in the mush is one-thousandth that of the
perturbed flow in the melt. It is therefore called a weak flow. (b) The isotherms corresponding to
the flow shown in (a). The maximum heat flux on the interface occurs at the upstream face of the
trough and the minimum occurs at the downstream face.

the downstream face will solidify because the conduction of heat from the upper hot
region toward the upstream face is enhanced while that toward the downstream face
is suppressed. Therefore, the perturbed flow in the melt is likely to make the interface
translate upstream and deform in the opposite sense.

The above conclusion gives rise to another question: Is the weak flow in the mush
or the perturbed flow in the melt responsible for the enhancement of the interface
deformation? The answer can be seen from figure 6(d), where the instability mode is
propagating in the direction of the imposed flow (because w; < 0). We thus conclude
that the morphological instability is triggered by the weak flow in the mush, and the
perturbed flow in the melt plays a stabilizing role. This conclusion is supported by
Feltham & Worster (1999), who asserted that their morphological instability relies on
the weak flow in the mush induced by the Bernoulli effect, and the inclusion of the
viscosity in the melt makes the instability weaker.

In summary, the imposed parallel flow over an incipiently corrugated interface
causes a virtually periodical perturbation of pressure along the interface due to the
Bernoulli effect. This then produces a flow perturbation in the melt (the morphological
mode) and a weak flow in the mush (due to the large Darcy resistance). Although the
perturbed flow in the mush is much weaker than that in the melt, it however plays an
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important role in the positive feedback mechanism of the morphological instability.
On the other hand, the perturbed flow in the melt retards the growth of the interface.
In other words, the morphological instability is affected by the flow induced in both
the mush and the melt, but stimulated primarily by the flow in the mush.

8. Concluding remarks

We have investigated the effect of shear flow on the convective stability in a binary
solution directionally solidified from below. A 26 wt% ammonium chloride solution is
considered as the working fluid and the horizontal domain is considered to be infinite
so that a shear flow parallel to melt/mush interface can be imposed. Results from
present analyses show that there are four instability modes of interest in the present
system: the mushy-layer mode, the boundary-layer mode, the morphological mode
and the suction-layer mode. Because the Bernoulli force is much weaker than the
solute buoyancy, the mushy-layer mode is virtually unaffected by the imposed shear
and remains more stable than the other instability modes. The boundary-layer mode,
on the other hand, senses the influence of the imposed flow as soon as the flow is
imposed, responding with the immediate alignment of the cell axis with the direction
of the shear flow. As a result, the longitudinal boundary-layer mode dominates the
system as the shear flow increases in intensity (as shown by U,,) until the onset of the
morphological mode, a transverse mode triggered mainly by the pressure variation
along the corrugated interface. As U,, increases, the morphological mode merges with
the boundary-layer mode while retaining its original features. The features of this
novel morphological mode are summarized as follows:

(i) It is a transverse mode.

(i1) Its length scale is larger than the solute boundary layer thickness but smaller
than the thermal or the shear boundary layer thickness.

(ii1) It appears as a travelling wave, propagating along with the shear flow.

(iv) It can occur even if the destabilizing solute gradient vanishes (i.e. R, = 0),
namely the buoyancy plays no role in its formation.

(v) It differs greatly from the suction-layer mode in both the wavelength and the
stability criteria.

(vi) It is triggered by the weak flow of the mushy layer, which results in the
pressure variation along the corrugated melt-mush interface (the so-called Bernoulli
force), being the same mode as revealed by Feltham & Worster (1999).

Delves (1968, 1971) and Coriell et al. (1984) showed that, as the shear flow is
imposed upon the melt/solid interface, the modes with a transverse component are
invariably inhibited so that the longitudinal mode dominates the system. This is
similar to the present result before the morphological mode appears. Nevertheless, we
have shown that within a large parameter range the morphological (transverse) mode
dominates the system. This difference stems mainly from the existence of the mushy
layer, in which a weak flow is induced by the imposed shear flow in the melt. This
weak flow enhances the deformation of the melt/mush interface as well as the pressure
variation along the interface and then triggers the onset of the morphological mode.

The morphological mode is very unstable, and can be triggered even without
buoyancy. The imposed shear flow is the major reason for its formation. Chung &
Chen (2000b) show that there is a strong shear flow above the melt/mush interface
in the experiment of Sample & Hellawell (1984), implying that the morphological
mode may dominate the system. We nevertheless note that in their system, owing to
inclined rotation the centrifugal force and Coriolis force may play significant roles
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in determining the stability, while in the present system neither of forces exists. This
difference may lead to different conclusions, which might merit future study.
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